Formal Safety Certification of Aerospace Software

Ewen Denney and Bernd Fischer
{edenney,fisch}@email.arc.nasa.gov

USRA/RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA

In principle, formal methods offer many advantages for aerospace software development: they can help
to achieve ultra-high reliability, and they can be used to provide evidence of the reliability claims which
can then be subjected to external scrutiny. However, despite years of research and many advances in the
underlying formalisms of specification, semantics, and logic, formal methods are not much used in practice.
In our opinion this is related to three major shortcomings. First, the application of formal methods is still
expensive because they are labor- and knowledge-intensive. Second, they are difficult to scale up to complex
systems because they are based on deep mathematical insights about the behavior of the systems (i.e., they
rely on the “heroic proof”). Third, the proofs can be difficult to interpret, and typically stand in isolation
from the original code.

In this paper, we describe a tootforformally demonstrating safety-relevant aspects of aercspace software;
which largely circumvents these problems. We focus on safety properties because it has been observed!
that safety violations such as out-of-bounds memory accesses or use of uninitialized variables constitute the
majority of the errors found in the aerospace domain. In our approach, safety means that the program will
not violate a set of rules that can range for the simple memory access rules to high-level flight rules. These
different safety properties are formalized as different safety policies in Hoare logic, which are then used by a
verifi¢ation condition generator along with the code and logical annotations in order to derive formal safety
conditions; these are then proven using an automated theorem prover. Qur certification system is currently
integrated into a model-based code generation toolset that generates the annotations together with the code.
However, this automated formal certification technology is not exclusively constrained to our code generator
and could, in principle, also be integrated with other code generators such as RealTime Workshop or even
applied to legacy code.

Our approach circumvents the historical problems with formal methods by increasing the degree of
automation on all levels. The restriction to safety policies (as opposed to arbitrary functional behavior)
results in simpler proof problems that can generally be solved by fully automatic theorem provers.? An
automated linking mechanism between the safety conditions and the code provides some of the traceability
mandated by process standards such as DO-178B.3 An automated explanation mechanism uses semantic
markup added by the verification condition generator to produce natural-language explanations of the safety
conditions and thus supports their interpretation in relation to the code. Figure 1 shows an automatically
generated certification browser that lets users inspect the (generated) code along with the safety conditions
(including textual explanations), and uses hyperlinks to automate tracing between the two levels. Here,
the explanations reflect the logical structure of the safety obligation but the mechanism can in principle be
customized using different sets of domain concepts. The interface also provides some limited control over
the certification process itself.

Our long-term goal is a seamless integration of certification, code generation, and manual coding that
results in a “certified pipeline” in which specifications are automatically transformed into .executable code,

together with the supporting artifacts necessary for achieving and demonstrating the high levels of assurance

needed in the aerospace domain.

lof 2

American Institute of Aeronautics and Astronautics

init-certification of quaternion_ds1 (IMU + SRU: nonlinear w/ quaternions) @
206: 2pred_dst_filter(C, 0) := zhatmin dsi_filter{ld, @4); =
207: 2pred dsi filfer(l, 0) := mhatmin Asi_€ilveril, 8: Prover Control
208: zpred_dsi_filter(Z, 0) := xhatmin TrilteriZ, 0); X
;"09: 2nat_dsi ?~1ter(0 0) := 2(8, pvs) ATP Time Parameters
2L0: zhat ds1 filter(l, 9) := z(1, pv&); T R
21 zhatdsifilter(2) D) := oi2, pvd); | Fo8 =t
0 a " ; . Axioms Evidence
// Update loop dependent quantities - oIl poe
// V¢ quaterniou_ds}_init_0028 L Fult axiamms >t iNons -
212: 1f{ pv5§ > 0}
Sono Stap Reset |
213: phi_dsi_filter(2, 1) := v * (zbatmin _dsl _filter(3, 8) - u(0. pv5il: I “‘""‘l T
214 phi_dsi {‘xcqm- Gy :=~ 1t » {u{l, pvd) - zhatmin_ds1 filter(d4, 0)};
215 phi_dst Filter(l, 2) :« t * {u(D, pv5) - xhermin_del_filter(3, O)}:
Its: phi_dst _filtsrtl, D) := & * {xhatmin _ds?_Fitver!S, 0V - u(z, pu vEyl;
// Ve quaternion_dsl_init 0028 -)
phi_dsi_ i]tﬁr(O 2) := t - (xhapein_dsl filter{4, ©) - u(l, pvs));
"‘ : pbv dsl_Firter(D, L} =t * (uil, pvS) - =hatmin_dsl_filrar(S, 03); Verification Conditions
H
e Snow Open Ve | Sectak | Cioar Eveance |
2 update moy depandent quantities
219 1f(pvs > 0
220: dv_dsi fu er(2, 9) := xhatmin _dsi_filter(S, G): : &)
221 dvdsi_filter(l, 0} := xhatmin_dsl filterid, 0}; quateralon_dst_inlt_1028
222: dv dsl f\.it-:rlﬂ, 0) := xhatnin : _ds1 ﬂner(‘z m; .
) % Given the hypotheses:
alse % - the eertion propagated from line 60
b % - the sasertion propageted from line 97
. .. % - the asserrion propagated from line 104
223: gain_dsl_filter := pminus_dsl _filter » % - the assertion propagated from Line 141
(:rans();_dsi_filtar) * . <] % - the assertion propagaed from ime 151
inv(r_dsl_filter + T
B dsi_filter * % - the azection propageced from lipe 13
{pmBus_dsi_filter » trans(h_dsl_filter}}}): % - the assertion ox ‘rom e 192 A
223. zhatl dsl_filter := xhatmin dsi _filter + ®- thebopbounﬁsul_m_gé
gain_dsi_filter ¢ % - the assertion propagated trom lins 203
(zhat_dsi_filter - pred dst_filter); s~ rrre:ssatedpoﬂ*mdnma]m@
225 pplus_dsl_filter := (id_asl filter - gain_cel_filtar # h_del filter] » % - the conditicn & line 212
— puinus_dsl_riltar: - ~ 317
226: shatmin_dsl_filter := dv_dsT_filter = % show the safety conditin at oy 217
S1_f£1 * 1 .
227: pminug_dsl _filter := q_}-;:; \:,ui,—l:sr zhatl gl fiiter; input_formulafquaternion_dsl_1nit_0028,
- phi_dsi_filter # conjecture, |
(pplus_dsl_riltsr » trans(phi_dsl_filter)); {leq{d, pvs) & legtpvs. 588} & gtipvs, 0} &
(Y ta, Bl : ¢
4/ Populate Ouiput Vector lag{0, A) & leg{d, Bl & leqia, 2} & leqiB.
:'."28: for({pv3% .= 0 .. n_statevars - 1]) S(Hq_’ 3t 4 <
g, - 3 . (.
29: vhat_dsl_fileer(pvd9, pud) 1= shatl_ds)l_filter(pvdd, 0); squal {a_select3(h_dsl_filtez_intc. A, B).

init) }} &
ft(e, o o+
~} 119qi0, €) & leqi0, D) & leqfC, 5) & lagib,

S (8 & Document Done (0058 se

Figure 1. Certification browser
+

References

!Kandt, R., “Software Defect Avoidance and Detection: Practices and Techniques,” Tech. rep., JPL, 2003, Document
D-24993.

2Dermey, E., Fischer, B., and Schumann, J., “Using Automated Theorem Provers to Certify Auto-Generated Aerospace
Software,” Proceedings of the 2nd International Joint Conference on Automated Reasoning (IJCAR’04), Vol. 3097 of Lecture
Notes in Artificial Intelligence, Cork, Ireland, 2004, pp. 198-212.

3RTCA Special Committee 167, “Software Considerations in Airborne Systems and Equipment Certification,” Tech. rep.,
RTCA, Inc., Dec. 1992.

2 of 2

American Institute of Aeronautics and Astronautics

